A reciprocal difference equation with maximum

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Reciprocal Difference Equation with Maximum and Periodic Coefficients

We study the nonlinear difference equation xn = max { An xn−1 , Bn xn−2k−1 } , n ∈ N0, where k is any fixed positive integer and the coefficients An,Bn are positive and periodic with the same period 2. The special case when k = 1 has been investigated earlier by Mishev, Patula and Voulov. Here we extend their results to the general case. AMS subject classification: 39A10.

متن کامل

On the Periodicity of a Difference Equation with Maximum

Recently, there has been a great interest in studying the periodic nature of nonlinear difference equations. Although difference equations are relatively simple in form, it is, unfortunately, extremely difficult to understand thoroughly the periodic behavior of their solutions. The periodic nature of nonlinear difference equations of the max type has been investigated by many authors. See, for ...

متن کامل

A period 5 difference equation

The main goal of this note is to introduce another second-order differenceequation where every nontrivial solution is of minimal period 5, namelythe difference equation:xn+1 =1 + xn−1xnxn−1 − 1, n = 1, 2, 3, . . .with initial conditions x0 and x1 any real numbers such that x0x1 6= 1.

متن کامل

FUZZY LOGISTIC DIFFERENCE EQUATION

In this study, we consider two different inequivalent formulations of the logistic difference equation $x_{n+1}= beta x_n(1- x_n), n=0,1,..., $ where $x_n$ is a sequence of fuzzy numbers and $beta$ is a positive fuzzy number. The major contribution of this paper is to study the existence, uniqueness and global behavior of the solutions for two corresponding equations, using the concept of Huku...

متن کامل

a period 5 difference equation

the main goal of this note is to introduce another second-order differenceequation where every nontrivial solution is of minimal period 5, namelythe difference equation:xn+1 =1 + xn−1xnxn−1 − 1, n = 1, 2, 3, . . .with initial conditions x0 and x1 any real numbers such that x0x1 6= 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2002

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(02)80010-4